חומר הלימוד ומבחן מיון לדוגמא

מועד המבחן והסבר על תנאי הקבלה

דף הנחיות למבחן מיון במתמטיקה

דוגמא למבחן מיון במתמטיקה

דף הנוסחאות ל 3 יחידות במתמטיקה- משרד החינוך

 

הכנה לבחינת המיון במתמטיקה לשנה"ל תשע"ז

מטרת הבחינה: לבדוק ידע בסיסי במתמטיקה (רמה של 3 יח"ל) בהיקף חומר מצומצם, והתאמה לרמות לימוד של 4 ו 5 יח"ל במתמטיקה.

חומרי עזר לבחינה: ניתן להיעזר בספרי לימוד ברמת 3 יח"ל (אין עדיפות לספר מסוים): בני גורן/ אהרון אספיס/יצחק שליו ואתי עוזר/ גבי יקואל/ יואל גבע.

רשימת הנושאים לבחינה:

  • אלגברה וטכניקה אלגברית- סדר פעולות חשבון, נוסחאות הכפל המקוצר, פירוק לגורמים, משוואות ממעלה ראשונה  ושנייה עם נעלם אחד, מערכות משוואות ממעלה ראשונה ושנייה עם שני נעלמים והבנת הקשר בין משמעות הפתרון למשמעות הגרפית, משוואה ריבועית, משוואות ומערכות עם פרמטר.
  • גרפים- קריאת מידע (אינפורמציה)מגרפים המתארים מצבים "מציאותיים" והבנת המשמעות הגרפית של הפתרון.
  • בעיות מילוליות- פתרון בעיות מילוליות בנושאים תנועה, קנייה ומכירה כולל אחוזים, בעיות גיאומטריות, כלליות ולוגיות. בכל הנושאים עשויות להיות שאלות עם אחוזים ובשאלות גיאומטריות עשוי להידרש משפט פיתגורס.
  • גיאומטריה אנליטית- הפונקציה הקווית משוואת הישר הכללית ותיאורה הגרפי, הפונקציה הריבועית ותיאורה הגרפי, מציאת נקודות חיתוך בין קו ישר לפרבולה, מציאת נקודות עם הצירים, מציאת שטחים המורכבים ממשולשים, מלבנים וטרפזים הנוצרו על ידי קווים ישרים במערכת צירים.
  • גיאומטריה- הכרת המשולש, המקביליות (מקבילית, מלבן, ריבוע, מעוין), הטרפז, חישוב שטח משולש ומרובעים, משפט פיתגורס, הכרת המעגל וזויות במעגל (היקפית, מרכזית).
    הכרות הצורות והתכונות הגיאומטריות לשם יישומן בפתרון בעיות. במבחן לא תופענה שאלות הוכחה.
  • טריגונומטריה של המישור- הגדרת הפונקציות הטריגונומטריות: סינוס, קוסינוס, טנגנס במשולש ישר זווית ושימוש בהן. יישומים במישור: משולשים ישרי זווית ומצולעים המתפרקים למשולשים ישרי זווית- משולש שווה שוקיים, משולש כללי, מלבן, מעוין. במהלך פתרון הבעיות יידרש שימוש בתכונות הגיאומטריות של המצולעים השונים וכן חישובי שטחים והיקפים, ללא שימוש בפרמטרים.